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Individual susceptibility to cancer may result from several host factors including differences in
metabolism, DNA repair, altered expression of protooncogenes and tumor suppressor genes, and
nutritional status. Since most carcinogens require metabolic activation before binding to DNA,
variations in an individual's metabolic phenotype that have been detected in enzymes involved in
activation and detoxification should play an essential role in the development of environmental
cancer. This phenotypic metabolic variation has now been related to genetic polymorphisms, and
many genes encoding carcinogen-metabolizing enzymes have been identified and cloned.
Consequently, allelic variants or genetic defects that give rise to the observed variation and new

polymorphisms have been recognized. Development of simple polymerase chain reaction (PCR)-
based assays has enabled identification of an individual's genotype for a variety of metabolic
polymorphisms. Thus, recent knowledge of the genetic basis for individual metabolic variation
has opened new possibilities for studies focusing on increased individual susceptibility to environ-
mentally induced cancer, which are reviewed with special reference to smoking-induced lung
cancer. Cancer susceptibility due to chemical exposure is likely to be determined by an individual's
phenotype for a number of enzymes (both activating and detoxifying) relevant to that of a single
carcinogen or mixtures of carcinogens. Given the number and variability in expression of carcino-
gen-metabolizing enzymes and the complexity of chemical exposures, assessment of a single
polymorphic enzyme (genotype) may not be sufficient. Mutations in the p53 gene are among the
most common genetic changes in human cancer. The frequency and type of p53 mutations can

act as a fingerprint of carcinogen exposure and may therefore provide information about external
etiological agents, intensity of exposure, and host factors affecting the tumorigenesis process. In
human lung cancer, p53 mutations (both the mutation pattern and frequency) have been linked
with tobacco smoking; the type of mutation most frequently observed is G:C to T:A transversion, a

mutation preferentially induced by benzo[alpyrene diol epoxide. An association between the pres-
ence of this transversion and the genotype deficient in glutathione S-transferase Mi-mediated
detoxification has been observed in lung cancer. Taken together, these findings suggest that
determination of metabolic at risk genotypes in combination with levels of DNA adducts in target
(surrogate) tissues and the p53 mutation pattern should allow the identification of susceptible
individuals and subgroups in carcinogen-exposed populations. Environ Health Perspect
104(Suppl 3):569-577 (1996)
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Cancer Susceptibility in
Environmental Carcinogenesis

Epidemiological studies have estimated that
up to 80 to 90% of all cancers are related to

environmental factors, tobacco smoke, and
diet (1). Tobacco use is unquestionably a

major causative factor, accounting for about
30% of all cancer cases worldwide, espe-

cially lung cancer which is presently the
most common malignancy in the world.
Individual susceptibility to cancer may

result from several host factors including
differences in metabolism, DNA repair,
altered expression of protooncogenes and
tumor suppressor genes, and nutritional
status (Figure 1) (2). Since most carcino-
gens require metabolic activation before
binding to DNA, individual features of car-

cinogen metabolism play an essential role in
the development of environmental cancer.

Variations in an individual's metabolic
phenotype, i.e., phenotypic polymorphism,
have been detected in a variety of enzymes
involved in activation and detoxification of
chemical carcinogens. This phenotypic
metabolic variation has now been related to

genetic polymorphisms. A growing number
of genes encoding carcinogen-metabolizing
enzymes have been identified and cloned.
Consequently, there is increasing knowl-
edge of the allelic variants or genetic defects
that give rise to the observed variation.
Development of rather simple new tech-
niques such as polymerase chain reaction
(PCR)-based assays has enabled precise
identification of an individual's genotype

for a variety of metabolic polymorphisms.
Also, new polymorphisms have been recog-

nized. Thus, recent knowledge of the
genetic basis for individual metabolic varia-
tion has opened new possibilities for
studies focusing on increased susceptibility
to environmental cancer.

Many of the polymorphic genes of car-

cinogen metabolism show considerable
ethnic differences in gene structure and
allelic distribution (e.g., rare alleles, gene

amplifications, and pseudogenes). Many of
the first reports on genetic risk modifi-
cation were from Japan, and only after sev-

eral studies among various Caucasian
populations has an estimate of allele fre-
quencies, and thus of risk genotypes, been
obtained. Remarkable variation in meta-

bolic phenotypes and genotypes has been
reported for different ethnic and geographic
populations (3-8). The strong interethnic
variation has been underlined as a major
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Figure 1. The association of environmental exposure to carcinogens with host factors modifying the susceptibility
to adverse health effects. End points to monitor exposure, genetic predisposing alterations, and biological effec-
tiveness of exposure, e.g. adduct formation, are indicated. Adapted from Perera and Santella (2).

obstacle for extrapolation of results
between different ethnic groups (4).

Only a small number of studies have so
far been focused on genotyping of the
genes involved in the genetic regulation of
carcinogen metabolism and on the analyses
of combined genotypes in carcinogen
metabolism. This review summarizes
recent studies in this rapidly expanding
field, which mostly concentrate on lung
cancer in smokers. The references cited are
not exhaustive, and the reader is referred to
review articles (9-11).

Role of Metabolism and
DNA Adducts in Chemical
Carcinogenesis
DNA Adducts with Polyclic
Aromatic Hydrocarbons
The majority of human carcinogens do
not produce their biological effects per se
but require metabolic activation before
they can interact with cellular macromole-
cules. Many compounds are converted to
reactive electrophilic metabolites by the
oxidative, mainly cytochrome P450-
related enzymes (CYPs). A major represen-
tative of polycyclic aromatic hydrocarbons
(PAHs) is benzo[a]pyrene (B[a]P), pre-
sent in tobacco smoke and ambient air in
industrialized areas. B[a]P is converted
into phenolic metabolites such as 3-OH-
B[a]P and B[a]P-7,8-diol, by a CYP-
mediated process. Secondary metabolism,
mainly involving epoxide hydrolase and

another subset of CYP isoforms, leads to
the formation of the highly reactive
(+)-anti-B[a]P diol epoxide. This metabo-
lite has been shown to bind to genomic
DNA and activate oncogenes or other
critical genes and it is likely to be a
causative factor in several types of cancer
(12). Using a new high-performance liq-
uid chromatography (HPLC) fluorescence
assay, the levels of specific (+)-anti B[a]P
diol epoxide bound to DNA can be
quantified through the release of B[a]P-
tetrols (13) both from lung tissue DNA
and lymphocyte DNA (14).

The formation of smoking-related
DNA adducts in human lung tissue may
be a good dosimetric exposure marker.
Smokers have significantly elevated levels of

aromatic or hydrophobic adducts compared
with nonsmokers (15-17) (Table 1). In
some cases it is evident that adduct levels
are linearly related to total smoking expo-
sure (15,16) but, in the case of lung cancer
patients only, the shorter the period of
smoking before cancer occurred, the higher
the adduct level (17). Furthermore, adduct
levels are higher in women's lung DNA,
when figures are adjusted for smoking
exposure, a result that suggests (along with
preliminary epidemiological findings) that
women are at increased risk of lung cancer
from smoking, compared with men. The
enhancing effect of smoking on anti-B[a]P
diol epoxide-DNA levels in peripheral
mononuclear cells from coke oven workers
has been demonstrated (18). The 32P-post-
labeling technique gives an estimate of
total aromatic adducts. Possible genotype
dependence of DNA adducts, whether
specific to B[a]P or bulky PAH adducts, is
being investigated in lung tissue of lung
cancer patients.

Tobacco-specific Nitrosamines
4-(Methylnitrosamino)- 1 -(3-pyridyl)-
1-butanone (NNK), a nicotine-derived
tobacco-specific nitrosamine found in ciga-
rette smoke, is a potent pulmonary car-
cinogen in rodents. NNK and PAHs are
believed to be the major carcinogens
responsible for lung cancer in smokers.
NNK requires metabolic activation to bind
to DNA and express its carcinogenic effects.
Its metabolism includes a-hydroxylation,
pyridine-N-oxidation and reduction to 4-
(methylnitrosamino)- 1-(3-pyridyl)-1 -buta-
nol (NNAL), and conjugation ofNNAL to
its glucuronide. NNAL and the correspond-
ing glucuronide can be detected in human
urine and are good exposure indicators of
the tobacco-specific nitrosamine NNK.

Table 1. The metabolic and genotype parameters in lung cancer patients according to their smoking habits and
GSTM1 gene status.

Smokers Ex-smokers
Parameter (46.6 ± 22.2 pack-years) (38.6 ± 24.2 pack-years) Nonsmokers

Genotype, GSTM1 Wild Null Wild Null Wild Null
AHH (nmol/min/mg 1.19 ± 1.33# 0.88±1 .26# 0.12 ± 0.15 0.045± 0.10* 0.08 ±0.20 0.27 ± 0.08
protein)

Bulky DNA adducts 8.7±4.7# 9.9±6.1' 1.4±0.9 3.4±1.4** 1.6±0.9 1.6±1.0
in lung parenchyma
(104 nucleotides)

AUX/1 7U 9.2 ±4.2 8.9 ±3.4 5.4±1.3 5.6±2.7 5.4±1.7 6.7 ±3.0
17X+ 17U/137X 10.8±4.2 17.1±5.3** 14.7±8.4 15.4±6.6 ND ND

Abbreviations: wild, GSTM1 positive; null, GSTM1 negative (gene); AHH, aryl hydrocarbon hydroxylase; AUX,
1-methylxanthine, dimethyluric acid, and 5-acetylamino-6-formylamino-3-methyluracil; 17U, 1,7-dimethyluric acid;
17X, 1,7-dimethylxanthine; 137X, caffeine; ND, no data. Interim results from a collaborative study on Finnish lung
cancer patients; n=89. *p<0.05; **p<0.01 as compared to respective GSTM1-positive genotype; $p<0.01 as
compared to respective GSTM1 genotype of ex-smokers or nonsmokers.
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NNK-derived DNA adducts have only
partially been characterized (19).

In humans, the balance between toxifi-
cation and detoxification of NNK may be
influenced by the individual's enzymatic
capacity. By measuring a urinary metabolite
of NNK, NNAL glucuronide, the latter
could possibly serve as an index of an indi-
vidual's activation/detoxification capacity.
Because glucuronidation may exert genetic
polymorphism (20), some smokers with
higher glucuronidation capacity measur-
able by the ratio of NNAL glucuronide/
NNAL may partially be protected against
the carcinogenicity ofNNK.

Endogenous Adducts
The exocyclic DNA adducts ethenodeoxy-
adenine and ethenodeoxycytosine have
been found to be formed by the human
carcinogen vinyl chloride and by urethane;
they also can be formed from lipid peroxi-
dation products such as trans-4-hydroxy-2-
nonenal via epoxidation (21-23). Etheno
adducts thus may serve as a DNA marker
of oxidative stress. After development of a
highly specific and ultrasensitive assay,
these etheno adducts can now be detected
with the sensitivity of 4 adducts/1010 nor-
mal nucleotides (24). Recently, a close cor-
relation has been observed between
aliphatic epoxide-induced sister chromatid
exchanges (SCEs) in cultured human lym-
phocytes and GSTT1 polymorphism. The
null genotype had higher induced, as
well as background, frequencies of SCEs
(25,26). Because mutagenic epoxides
produced from lipid peroxidation prod-
ucts could be substrates for GSTTI or MI,
it is conceivable that the level of etheno-
DNA adducts (and the resulting frequency
of point mutations) is effected by these
polymorphic detoxifying enzymes.

Human Genes Associated
with the Metabolism
of Carcinogens
CYPIAI
CYPlAl is well conserved among the
xenobiotic-metabolizing enzymes. In
human lung tissue of smokers, the level of
B[a]P diol epoxide adducts and total aro-
matic DNA adducts were significantly pos-
itively correlated with CYPlAl expression
or B[a]P-hydroxylase or aryl hydrocarbon
hydroxylase (AHH) enzyme activity (13).
Several studies have indicated an associa-
tion of the genetic polymorphism of
CYPIAI and cancer. A co-segregation of
the CYPlAl phenotype and polymorphism

of the MspI restriction site in the CYPIAI
gene was discovered (27), but this discov-
ery was challenged later (28). Thus the
association between the mutant CYPIAI
alleles and CYPlAl functional activity is
not clear at the moment, but recent studies
indicate that variant alleles at the MspI site
in exon 7 could result in a more active
CYP lAl enzyme (29,30). A significant
correlation in a Japanese population
between susceptibility to lung cancer and
homozygosity for the rare MspI allele was
reported by Kawajiri et al. (31) and
Nakachi et al. (32). Another closely linked
polymorphism, a point mutation resulting
in an amino acid substitution (Ile-Val) in
the heme-binding region of the CYPlAl
protein was found by Hayashi et al. (33).
This genotype results in an altered enzyme
activity and was shown to be associated
with squamous cell and small cell types of
lung cancer (34). There are significant
ethnic differences in the frequency of
CYPIAI alleles, and both the m2 and Val
alleles appear to be rare in Caucasians
(5,35,36). This requires more follow-up
studies involving more cancer patients
and controls to unmask the association
in Caucasians.

CYPJA2
The CYP1A2 isoform is predominantly
expressed in liver and it activates a large
number of dietary and environmental pro-
carcinogens. This isoform is expressed in
all studied human livers. To date, no genetic
polymorphism has been found, but pheno-
typic polymorphism has been demonstrated
using caffeine as a probe drug (37).

CYP246
In humans, CYP2A6 isoforms are media-
tors of 7-hydroxylation of coumarin, a
component of cigarette smoke, certain
alcoholic beverages, and a common con-
stituent of various plants. CYP2A6 is also
known to be capable of activating several
other nitrosamines present in tobacco
smoke and in the diet. The CYP2A gene
cluster has been recently characterized
(38). There are three functional genes in
the subfamily, i.e., CYP2A6, CYP2A7, and
CYP2AJ2, and two pseudogenes have been
found. Two different variant alleles of the
CYP2A6 gene were identified (CYP2A6vJ
and CYP2A6v2). Thus, by developing a
PCR-based method to detect CYP2A6-
poor metabolizers, population studies
should be able to assess the role of this
polymorphism in tobacco smoke-caused
lung cancer risk. This is especially relevant

because CYP2A6 mediates the activation
ofNNK (39).

CYP2E1
The ethanol-inducible CYP2E1 metabo-
lizes several known and suspected chemical
carcinogens including N-nitrosamines.
Genetic polymorphisms of the CYP2EI
gene have been shown to be associated
with human cancer. In a Japanese study
(40), two different alleles for the CYP2E1
gene were observed with the DraI restric-
tion enzyme. The distribution of the corre-
sponding genotypes among lung cancer
cases was significantly different from that
among controls, especially the homozygous
rare genotype that was absent in the lung
cancer group. No difference in the genotype
frequencies was found between patients
with other cancers and controls (40).

Subsequent studies have revealed
profound ethnic differences in the frequen-
cies of the polymorphic alleles. For exam-
ple, in contrast to the Japanese findings,
Kato et al. (41) studied a group of 128
mostly Caucasian lung cancer patients and
found no association between the RsaI
genotypes and lung cancer risk. However, a
significant association between the defec-
tive alleles of the CYP2EJ gene promoter
region (RsaI) and lung cancer risk was
shown in a Swedish study (42). These con-
tradictory results need to be verified in
studies with more statistical power from
various ethnic populations.

CYP3A4
The CYP3A4 isoform has been shown to
activate numerous important procarcino-
gens such as B[a]P. Although the three dif-
ferent CYP3A genes (3A4, 3A5, and 3A7)
are expressed at widely varying levels
among individuals, polymorphism for only
CYP3A4 and 3A5 has been found to date.
Several allelic variants of the CYP3A4 gene
were recently reported by Peyronneau et al.
(43). Therefore, the distribution of the dif-
ferent alleles in lung cancer patients and
controls should be investigated. CYP3A5,
which is polymorphically expressed in the
liver, has been found in human lungs (44).

AhR and Arnt Genes
The induction of CYPlAl is initiated
by the specific binding ofPAH compounds
to a soluble intracellular protein, the
aromatic hydrocarbon receptor (AhR)
(45). Hankinson and coworkers (46) have
recently cloned a gene involved in the
CYPlAl induction pathway, the Ah recep-
tor nuclear translocator (Arnt) gene, and
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they have identified an MspI restriction
fragment length polymorphism (RFLP) in
the human gene (47). The allele frequen-
cies at the Arnt RFLP are 0.62 and 0.38 for
the Al and A2 alleles, respectively. The lig-
anded nuclear form of the AhR complex
stimulates transcription of the CYPIAI
gene via interaction with specific DNA
sequences, xenobiotic responsive elements
(XRE). Hayashi et al. (48) found that the
expression level of CYPIAJ was associated
with those of AhR and Arnt mRNAs and
also that the expression of AhR and Arnt
was influenced by cigarette smoking.

Glutathione Stransferases
Several carcinogens present in the diet and
tobacco smoke are inactivated by glu-
tathione S-transferases (GSTs). The known
substrates for GSTs in cigarette smoke are
those derived in bioactivation from PAH.
The most studied carcinogenic PAH diol
epoxide, B[a]P 7,8-diol-9,10-epoxide, is a
relatively good substrate for many forms
such as GSTMI, M2, and M3, and better
still with GSTPI (49).

The genetic polymorphism of the
GSTM1 gene that encodes the glutathione
S-transferase M1 enzyme is a result of a
homozygous deletion of the entire GSTM1
gene locus (50). The GSTM1 gene locus
contains three alleles, i.e., the GSTMIA
and GSTMIB alleles, which differ by a sin-
gle amino acid, and a deficient GSTMI null
allele. About 50% of the Caucasian popula-
tion inherits two deficient alleles (i.e., they
are homozygous for the null allele of the
gene) and are thus devoid of GSTM1 activ-
ity. The GSTMI null genotype frequency
has been reported to show marked ethnic
variation (51). Individuals lacking GSTM1
could be at a greater risk for developing
lung cancer due to deficient detoxification
processes; this notion is supported by recent
studies (52). In persons who lack the
GSTM1 gene, activation of carcinogens in
tobacco smoke (e.g., B[a]P) appears to be
increased, while the efficacy of detoxifi-
cation is limited both qualitatively (absence
ofGSTM1-1 enzyme and low expression of
GSTM3-3 enzyme) and quantitatively (low
overall GST activity). This was confirmed
by biochemical studies (Table 1). The
metabolic activity (AHH activity, level of
bulky PAH-DNA adducts in lung paren-
chyma) was measured in Finnish lung
cancer patients divided according to their
smoking habits and GSTM1 genotype (9).
AHH activity was highest in smokers, inde-
pendent of the GSTM1 genotype; also, the
amount of DNA adducts was highest in

smokers (Table 1). When smokers and
ex-smokers were grouped according to
GSTMI gene status, smokers with a nulled
GSTM1 gene had about 10% more bulky
PAH-DNA adducts in lung parenchyma,
whereas ex-smokers with this gene defect
had a 2.4-fold excess of these DNA lesions.
An independent study (17) also reported
an excess of individuals with GSTMI defi-
ciency with high adduct levels in their lung
tissue among male lung cancer patients. In
our study (Table 1), one other parameter
was determined: cytochrome P4501A2-cat-
alyzed activity measurable in the urine by
the use of caffeine as a probe drug (53).
Kadlubar et al. (53) compared the ratio of
1,7-dimethylxanthine + 1,7-dimethyluric
acid/caffeine (1 7X + 1 7U/ 1 37X) and the
ratio of 1-methylxanthine + 5-acetylamino-
6-formylamino-3 methyluracil/1,7-dimeth-
ylxanthine + 1-dimethyluric acid, showing
that the former parameter is a better indica-
tor of this enzyme activity. Our study
showed a significant difference (p< 0.01) in
this parameter, best representing CYPJA2
activity between GSTMI positive (wild
type) and mutated (null) gene in smokers
(Table 1). This suggests a clustering of
metabolic parameters leading to increased
adduct formation, although in this study
only about 10% more adducts were found
in this group (null GSTMI) of smokers.
Alternatively or additionally, the GSTMI
gene status may profoundly affect the metab-
olism and excretion of caffeine metabolites,
thus altering the ratio of 17X + 17U/137X

The first epidemiological studies
appeared to confirm a relationship between
GSTMI deficiency and lung cancer risk
(54,55). There are, however, several puta-
tive confounding factors that are known to
affect the phenotype such as environmental
exposures, nutrition, and differences in
smoking habits (56). In recent genotyping
studies using PCR assays (51), no associa-
tion has been found between null genotype
and lung adenocarcinoma, but a tendency
for an association between the GSTMI
genotype and squamous cell carcinoma has
been reported (57-59).

GSTT1
Recently a GST null phenotype unrelated
to the GSTMI was described for the gluta-
thione-dependent detoxification of natu-
rally occurring monohalomethanes. In
human erythrocytes the monohalomethanes
are detoxified by conjugation with glu-
tathione (60-62). About 60 to 80% of the
human population is able to carry out this
metabolic reaction, whereas the remainder

is unable to do so (61). Further characteri-
zation of this phenotype showed that glu-
tathione conjugation of the industrially
used chemicals dichloromethane and ethyl-
ene oxide (which is also a metabolic prod-
uct of ethylene in animals and humans)
could only be catalyzed by blood samples
from the conjugator population (63).
However, positive conjugator status is not
necessarily beneficial because conjugation
of monohalomethanes and ethylene oxide
is detoxifying, whereas conjugation of
dichloromethane yields a mutagenic
metabolite (64). Given that monohalo-
methanes, ethylene oxide, and dichloro-
methane and other man-made alkyl halides
have wide industrial uses, any polymorphic
locus that may be involved in their metab-
olism would have epidemiological interest.
In studies on smoking-related cancers,
GSTTI polymorphism is of particular
interest because monohalomethanes are
present in tobacco smoke (65).

EPIX
Human microsomal epoxide hydrolase
(mEH) is an important biotransformation
enzyme that metabolizes reactive epoxide
intermediates to more water-soluble trans-
dihydrodiol derivatives (66,67). Substrates
for the enzyme include epoxides of envi-
ronmental toxins such as the carcinogenic
PAHs, aromatic amines, and benzene
(67-69). Frequently, the metabolism of
epoxide-containing compounds by mEH
results in the production of inherently less
reactive and less toxic intermediates
(66,70). However, in certain instances,
notably in concert with oxidative metabo-
lism by the cytochrome P450s, hydrolysis
of particular PAH epoxides by mEH can
lead to the formation of highly electro-
philic and mutagenic diol epoxides (67,69).
The gene encoding mEH (EPHX) is
inducible by certain chemicals. Recently
certain allelic variants of the EPHXgene,
encoding different combinations of amino
acid residues at positions 113 and 139 in
mEH protein, were shown to directly
influence enzyme activity, possibly by
affecting protein stability (71). Therefore,
it is reasonable to postulate that individuals
with specific allelic combinations, espe-
cially at homozygous state, may be at dif-
ferential risk for the ability to metabolize
reactive epoxides efficiently.

Uridine Diphosphate
Giucuronosyitrases
The uridine diphosphate glucuronosyl-
transferases (UGTs) comprise a family of
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isoforms. It is known that at least four
cDNA-expressed human hepatic UGTs
hydroxylate glucuronidase derivatives of
the model carcinogens B[a]P and 2-acetyl-
aminofluorene (72). Recently, there has
been considerable progress in the molecu-
lar genetics of this enzyme family (73).
Nine human cDNAs have been cloned to
date, and they have been classified into
two families, UGT1 and UGT2, on the
basis of the similarity of their deduced
amino acid sequences (74). Evidence for
variability in the general population has
been obtained, but no genetic polymor-
phism of the UGT genes has so far been
observed (75). The data based on pheno-
typing analysis of NNK metabolites,
NNAL and NNAL glucuronides, in the
urine of smokers suggest the presence of
polymorphism in UGT (20).

Susceptible Genotypes
and Genetic Alterations
in Lung Cancer
Genotypes and Lung Cancer Risk
Cancer susceptibility due to chemical
exposure is likely to be determined by an
individual's phenotype for a number of
enzymes, both activating and detoxifying,
relevant to that of single carcinogens or
mixtures of carcinogens. Given the number
and variability in expression of carcinogen-
metabolizing enzymes now identified and
the complexity of chemical exposures,
assessment of a single polymorphic enzyme
or genotype may not be sufficient. Several
recent reports have evaluated effects of
combinations of the risk genotypes on
cancer susceptibility. Hayashi et al. (34)
described a 5.8-fold relative risk for all lung
cancer types and a 9.1-fold relative risk for
squamous cell carcinoma in Japanese indi-
viduals who were homozygous both for the
CYPIAI Val and GSTMI null risk alleles.
In a recent study by Nakachi et al. (32), 85
patients with squamous cell lung carci-
noma were genotyped for CYPIAI and
GSTMI alleles. Individuals with the sus-
ceptible CYPIAI MspI genotype combined
with deficient GSTM1 were at a remark-
ably high risk of developing the carcinoma
with an odds ratio of 16. The risk was even
higher in individuals who had the other
susceptible genotype of CYPIAJ (VaI/Val)
combined with GSTMI null genotype
(OR= 41). The great differences in these
odds ratios suggest that the CYPIAI allelic
defects leading to the risk genotypes affect
the function of the CYPlAJ gene in a
distinct way. These findings are consistent

with the notion that some procarcinogens
in cigarette smoke are activated by CYPlAl
and inactivated by GSTM1 enzymes. The
rare occurrence of the CYPIAI MspI m2
allele in the Caucasian population (35,36)
precludes any conclusions about the extent
of risk modification by the genotype
homozygous for both CYPIA1 m2 and
GSTMI null alleles in lung cancer in
Caucasian populations and thus has to be
clarified further.

DNA Adducts and Canlcer
Susceptibility Genes
A number of studies have tried to relate
metabolic phenotype or, more recently,
genotype to cancer risk. These efforts are
presently extended to studies on various
other biomarkers of cancer such as markers
of exposure and (early) effects that included
DNA adducts, urinary mutagenicity,
cytogenetic damage, and p53 mutations.

In a genotyping study, no correlation
was found between the homozygous risk
MspI genotype or amino acid replacement
genotype of CYPIAI and DNA adducts in
smokers (5); in a phenotype study, how-
ever, a correlation between aromatic lung
DNA adducts and CYPlAl activity among
smokers was observed (13,76). Unexpec-
tedly an association of the CYPIAI geno-
type heterozygous for the rare risk allele
(ml/m2) with low adduct levels in white
blood cell DNA was observed among
chimney sweeps in Sweden (77). In the
same study, an increased level of adducts
was detected in the GSTMI null individu-
als. Also, a Norwegian report has indicated
that mutations detected in the tumor sup-
pressor gene p53 in lung tumors from
GSTMI null patients who smoked were
more frequently the type experimentally
known to be caused by (+)-anti-B[a]P diol
epoxide (78).

Genetic Alterations
The tumor suppressor gene p53 encodes a
nuclear protein that has several biological
functions including cell cycle control and
DNA repair and replication. This protein
has been suggested to have a role in early
response to cellular DNA damage. Muta-
tions in the p53 gene are among the most
common genetic changes in human cancer
and are found in more than 50% of all can-
cers. p53 mutations have also been shown
to have important clinical implications.
The frequency and type of p53 mutations
can act as a fingerprint of carcinogen expo-
sure and may provide information about
external etiological agents and internal

factors affecting the tumorigenesis process
(79,80). In human lung cancer, p53 muta-
tions (both the mutation pattern and fre-
quency) have been linked with tobacco
smoking (78,81-83). The type of muta-
tion most frequently observed in lung
cancer is G:C to T:A transversion (80), a
type of mutation preferentially induced in
experimental systems by (+)-anti-B[a]P
diol epoxide. Furthermore, an association
between the genotype deficient in GSTM1-
mediated detoxification and presence of
G:C to T:A transversions has been observed
in lung cancer patients (78). These findings
suggest that investigation of p53 mutation
patterns in relation to metabolic at-risk
genotypes and levels of DNA adducts in
lung tissue will provide valuable infor-
mation for understanding mechanisms of
pulmonary carcinogenesis.

Alterations in microsatellite sequences
(simple sequence repeats) of the human
genome were originally observed in spo-
radic and hereditary forms of colon cancer
(84,85). Since the discovery, a variety of
human tumors including small cell and
non-small cell lung cancer have been found
to contain similar instability of microsatel-
lite sequences (86-88). Somatic and germ-
line mutations of the mismatch repair
(MMR) genes have been found in the
patients with tumors showing replication
errors (RER) (89,90). The present data
suggest that, although many sporadic
tumors have mutations in MMR genes,
microsatellite instability has been observed
in many tumors without such mutations
and is therefore probably due to other alter-
ations (91). Similarly, it has been shown
that various forms of genetic instability are
increased in frequency in cells that lack a
normal p53 gene; as a consequence, addi-
tional genetic alterations may result (92).
Studies on somatic microsatellite instability
in lung cancer in relation to p53 mutations
and possible polymorphisms in mismatch
repair genes should open new approaches
to identify high-risk subjects.

Chromosomal Mapping of
Loci Affecting Predisposition
to Lung Cancer
Besides genes affecting carcinogen metabo-
lism, other genes appear to affect inherited
predisposition to lung cancer (93,94). On
mouse chromosome 8, an important locus
affecting inherited predisposition to lung
cancer in a region homologous to the
human 12pl2 has recently been mapped
(94,95). Sellers et al. (96) suggested that,
in humans, the pattern of lung cancer is
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best explained by Mendelian co-dominant
inheritance of a single autosomal locus
which is expressed only in the presence of
tobacco smoke and that influences the age
at onset of lung cancer. However, lung
cancers do not show familial clustering of
cases, indicating a possible low penetrance
or a multigenic nature of the lung cancer
predisposition trait. Even if rare pedigrees
of lung cancer could be identified, genetic
linkage study in these pedigrees would be
very difficult to carry out, considering the
poor prognosis of lung cancer. Neverthe-
less, genetic linkage studies may also be
performed in affected sibling pairs (97),
and this may represent a feasible alternative
approach to identify chromosomal loca-
tions of lung cancer susceptibility genes
in humans. Genetic linkage studies have
constituted an important approach to
study the genetics of diseases through the
identification of the number and chromo-
somal location of loci affecting a disease
(98,99). The chromosomal mapping of a
disease loci allowed the subsequent cloning
of disease genes whose germ-line mutations

cause inherited predisposition to common
tumor types (colon carcinoma, breast
cancer, etc.). Thus, genetic linkage studies
in lung cancer pairs of siblings and of sec-
ond degree relatives may facilitate finding
the chromosomal location of loci affecting
inherited predisposition to lung cancer.

Perspectives
Recent knowledge of the genetic basis for
individual metabolic variation has opened
new possibilities for studies focusing on
increased individual susceptibility to envi-
ronmentally induced cancer, and the devel-
opment of simple PCR-based assays has
enabled the identification of an individual's
genotype for a variety of metabolic poly-
morphisms. Cancer susceptibility due to
chemical exposure is likely to be deter-
mined by an individual's phenotype for a
number of enzymes, both activating and
detoxifying, relevant to that of a single car-
cinogen or mixtures of carcinogens. Given
the number and variability in expression
of carcinogen-metabolizing enzymes and
the complexity of chemical exposures,

assessment of a single polymorphic enzyme
(genotype) may not be sufficient, and the
establishment of a risk profile for each indi-
vidual or subgroup seems to be required.
Mutations in the p53 gene are among the
most common genetic changes in human
cancer. The frequency and type of p53
mutations can act as a fingerprint of car-
cinogen exposure and may therefore pro-
vide information on external etiological
agents, intensity of exposure, and host fac-
tors affecting the tumorigenesis process.
Given the rapid advances in methodology,
the determination of metabolic at-risk
genotypes in combination with levels of
DNA adducts in target (surrogate) tissues
and p53 mutation patterns should allow
identification of susceptible individuals/
subgroups in carcinogen-exposed popula-
tions. Once identified, these high-risk sub-
jects might be persuaded more easily to
stop their (smoking) habits or to avoid haz-
ardous exposure, or in the case of smokers,
it might be possible to offer an intensive or
personalized smoking cessation program.
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